3.2.13 \(\int x \sqrt {d+e x^2} (a+b \sec ^{-1}(c x)) \, dx\) [113]

3.2.13.1 Optimal result
3.2.13.2 Mathematica [C] (verified)
3.2.13.3 Rubi [A] (verified)
3.2.13.4 Maple [F]
3.2.13.5 Fricas [A] (verification not implemented)
3.2.13.6 Sympy [F]
3.2.13.7 Maxima [F]
3.2.13.8 Giac [F]
3.2.13.9 Mupad [F(-1)]

3.2.13.1 Optimal result

Integrand size = 21, antiderivative size = 195 \[ \int x \sqrt {d+e x^2} \left (a+b \sec ^{-1}(c x)\right ) \, dx=-\frac {b x \sqrt {-1+c^2 x^2} \sqrt {d+e x^2}}{6 c \sqrt {c^2 x^2}}+\frac {\left (d+e x^2\right )^{3/2} \left (a+b \sec ^{-1}(c x)\right )}{3 e}+\frac {b c d^{3/2} x \arctan \left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {-1+c^2 x^2}}\right )}{3 e \sqrt {c^2 x^2}}-\frac {b \left (3 c^2 d+e\right ) x \text {arctanh}\left (\frac {\sqrt {e} \sqrt {-1+c^2 x^2}}{c \sqrt {d+e x^2}}\right )}{6 c^2 \sqrt {e} \sqrt {c^2 x^2}} \]

output
1/3*(e*x^2+d)^(3/2)*(a+b*arcsec(c*x))/e+1/3*b*c*d^(3/2)*x*arctan((e*x^2+d) 
^(1/2)/d^(1/2)/(c^2*x^2-1)^(1/2))/e/(c^2*x^2)^(1/2)-1/6*b*(3*c^2*d+e)*x*ar 
ctanh(e^(1/2)*(c^2*x^2-1)^(1/2)/c/(e*x^2+d)^(1/2))/c^2/e^(1/2)/(c^2*x^2)^( 
1/2)-1/6*b*x*(c^2*x^2-1)^(1/2)*(e*x^2+d)^(1/2)/c/(c^2*x^2)^(1/2)
 
3.2.13.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 6 vs. order 3 in optimal.

Time = 1.59 (sec) , antiderivative size = 213, normalized size of antiderivative = 1.09 \[ \int x \sqrt {d+e x^2} \left (a+b \sec ^{-1}(c x)\right ) \, dx=\frac {\frac {2 b d^2 \sqrt {1+\frac {d}{e x^2}} \operatorname {AppellF1}\left (1,\frac {1}{2},\frac {1}{2},2,\frac {1}{c^2 x^2},-\frac {d}{e x^2}\right )}{c e x}+\frac {\frac {b \left (3 c^2 d+e\right ) \sqrt {1-\frac {1}{c^2 x^2}} x^3 \sqrt {1+\frac {e x^2}{d}} \operatorname {AppellF1}\left (1,\frac {1}{2},\frac {1}{2},2,c^2 x^2,-\frac {e x^2}{d}\right )}{\sqrt {1-c^2 x^2}}+\frac {2 \left (d+e x^2\right ) \left (-b e \sqrt {1-\frac {1}{c^2 x^2}} x+2 a c \left (d+e x^2\right )+2 b c \left (d+e x^2\right ) \sec ^{-1}(c x)\right )}{e}}{c}}{12 \sqrt {d+e x^2}} \]

input
Integrate[x*Sqrt[d + e*x^2]*(a + b*ArcSec[c*x]),x]
 
output
((2*b*d^2*Sqrt[1 + d/(e*x^2)]*AppellF1[1, 1/2, 1/2, 2, 1/(c^2*x^2), -(d/(e 
*x^2))])/(c*e*x) + ((b*(3*c^2*d + e)*Sqrt[1 - 1/(c^2*x^2)]*x^3*Sqrt[1 + (e 
*x^2)/d]*AppellF1[1, 1/2, 1/2, 2, c^2*x^2, -((e*x^2)/d)])/Sqrt[1 - c^2*x^2 
] + (2*(d + e*x^2)*(-(b*e*Sqrt[1 - 1/(c^2*x^2)]*x) + 2*a*c*(d + e*x^2) + 2 
*b*c*(d + e*x^2)*ArcSec[c*x]))/e)/c)/(12*Sqrt[d + e*x^2])
 
3.2.13.3 Rubi [A] (verified)

Time = 0.40 (sec) , antiderivative size = 179, normalized size of antiderivative = 0.92, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.429, Rules used = {5759, 354, 113, 27, 175, 66, 104, 217, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x \sqrt {d+e x^2} \left (a+b \sec ^{-1}(c x)\right ) \, dx\)

\(\Big \downarrow \) 5759

\(\displaystyle \frac {\left (d+e x^2\right )^{3/2} \left (a+b \sec ^{-1}(c x)\right )}{3 e}-\frac {b c x \int \frac {\left (e x^2+d\right )^{3/2}}{x \sqrt {c^2 x^2-1}}dx}{3 e \sqrt {c^2 x^2}}\)

\(\Big \downarrow \) 354

\(\displaystyle \frac {\left (d+e x^2\right )^{3/2} \left (a+b \sec ^{-1}(c x)\right )}{3 e}-\frac {b c x \int \frac {\left (e x^2+d\right )^{3/2}}{x^2 \sqrt {c^2 x^2-1}}dx^2}{6 e \sqrt {c^2 x^2}}\)

\(\Big \downarrow \) 113

\(\displaystyle \frac {\left (d+e x^2\right )^{3/2} \left (a+b \sec ^{-1}(c x)\right )}{3 e}-\frac {b c x \left (\frac {\int \frac {2 c^2 d^2+e \left (3 d c^2+e\right ) x^2}{2 x^2 \sqrt {c^2 x^2-1} \sqrt {e x^2+d}}dx^2}{c^2}+\frac {e \sqrt {c^2 x^2-1} \sqrt {d+e x^2}}{c^2}\right )}{6 e \sqrt {c^2 x^2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\left (d+e x^2\right )^{3/2} \left (a+b \sec ^{-1}(c x)\right )}{3 e}-\frac {b c x \left (\frac {\int \frac {2 c^2 d^2+e \left (3 d c^2+e\right ) x^2}{x^2 \sqrt {c^2 x^2-1} \sqrt {e x^2+d}}dx^2}{2 c^2}+\frac {e \sqrt {c^2 x^2-1} \sqrt {d+e x^2}}{c^2}\right )}{6 e \sqrt {c^2 x^2}}\)

\(\Big \downarrow \) 175

\(\displaystyle \frac {\left (d+e x^2\right )^{3/2} \left (a+b \sec ^{-1}(c x)\right )}{3 e}-\frac {b c x \left (\frac {2 c^2 d^2 \int \frac {1}{x^2 \sqrt {c^2 x^2-1} \sqrt {e x^2+d}}dx^2+e \left (3 c^2 d+e\right ) \int \frac {1}{\sqrt {c^2 x^2-1} \sqrt {e x^2+d}}dx^2}{2 c^2}+\frac {e \sqrt {c^2 x^2-1} \sqrt {d+e x^2}}{c^2}\right )}{6 e \sqrt {c^2 x^2}}\)

\(\Big \downarrow \) 66

\(\displaystyle \frac {\left (d+e x^2\right )^{3/2} \left (a+b \sec ^{-1}(c x)\right )}{3 e}-\frac {b c x \left (\frac {2 c^2 d^2 \int \frac {1}{x^2 \sqrt {c^2 x^2-1} \sqrt {e x^2+d}}dx^2+2 e \left (3 c^2 d+e\right ) \int \frac {1}{c^2-e x^4}d\frac {\sqrt {c^2 x^2-1}}{\sqrt {e x^2+d}}}{2 c^2}+\frac {e \sqrt {c^2 x^2-1} \sqrt {d+e x^2}}{c^2}\right )}{6 e \sqrt {c^2 x^2}}\)

\(\Big \downarrow \) 104

\(\displaystyle \frac {\left (d+e x^2\right )^{3/2} \left (a+b \sec ^{-1}(c x)\right )}{3 e}-\frac {b c x \left (\frac {4 c^2 d^2 \int \frac {1}{-x^4-d}d\frac {\sqrt {e x^2+d}}{\sqrt {c^2 x^2-1}}+2 e \left (3 c^2 d+e\right ) \int \frac {1}{c^2-e x^4}d\frac {\sqrt {c^2 x^2-1}}{\sqrt {e x^2+d}}}{2 c^2}+\frac {e \sqrt {c^2 x^2-1} \sqrt {d+e x^2}}{c^2}\right )}{6 e \sqrt {c^2 x^2}}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {\left (d+e x^2\right )^{3/2} \left (a+b \sec ^{-1}(c x)\right )}{3 e}-\frac {b c x \left (\frac {2 e \left (3 c^2 d+e\right ) \int \frac {1}{c^2-e x^4}d\frac {\sqrt {c^2 x^2-1}}{\sqrt {e x^2+d}}-4 c^2 d^{3/2} \arctan \left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {c^2 x^2-1}}\right )}{2 c^2}+\frac {e \sqrt {c^2 x^2-1} \sqrt {d+e x^2}}{c^2}\right )}{6 e \sqrt {c^2 x^2}}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {\left (d+e x^2\right )^{3/2} \left (a+b \sec ^{-1}(c x)\right )}{3 e}-\frac {b c x \left (\frac {\frac {2 \sqrt {e} \left (3 c^2 d+e\right ) \text {arctanh}\left (\frac {\sqrt {e} \sqrt {c^2 x^2-1}}{c \sqrt {d+e x^2}}\right )}{c}-4 c^2 d^{3/2} \arctan \left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {c^2 x^2-1}}\right )}{2 c^2}+\frac {e \sqrt {c^2 x^2-1} \sqrt {d+e x^2}}{c^2}\right )}{6 e \sqrt {c^2 x^2}}\)

input
Int[x*Sqrt[d + e*x^2]*(a + b*ArcSec[c*x]),x]
 
output
((d + e*x^2)^(3/2)*(a + b*ArcSec[c*x]))/(3*e) - (b*c*x*((e*Sqrt[-1 + c^2*x 
^2]*Sqrt[d + e*x^2])/c^2 + (-4*c^2*d^(3/2)*ArcTan[Sqrt[d + e*x^2]/(Sqrt[d] 
*Sqrt[-1 + c^2*x^2])] + (2*Sqrt[e]*(3*c^2*d + e)*ArcTanh[(Sqrt[e]*Sqrt[-1 
+ c^2*x^2])/(c*Sqrt[d + e*x^2])])/c)/(2*c^2)))/(6*e*Sqrt[c^2*x^2])
 

3.2.13.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 66
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[ 
2   Subst[Int[1/(b - d*x^2), x], x, Sqrt[a + b*x]/Sqrt[c + d*x]], x] /; Fre 
eQ[{a, b, c, d}, x] &&  !GtQ[c - a*(d/b), 0]
 

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 113
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[b*(a + b*x)^(m - 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1 
)/(d*f*(m + n + p + 1))), x] + Simp[1/(d*f*(m + n + p + 1))   Int[(a + b*x) 
^(m - 2)*(c + d*x)^n*(e + f*x)^p*Simp[a^2*d*f*(m + n + p + 1) - b*(b*c*e*(m 
 - 1) + a*(d*e*(n + 1) + c*f*(p + 1))) + b*(a*d*f*(2*m + n + p) - b*(d*e*(m 
 + n) + c*f*(m + p)))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] & 
& GtQ[m, 1] && NeQ[m + n + p + 1, 0] && IntegersQ[2*m, 2*n, 2*p]
 

rule 175
Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_ 
)))/((a_.) + (b_.)*(x_)), x_] :> Simp[h/b   Int[(c + d*x)^n*(e + f*x)^p, x] 
, x] + Simp[(b*g - a*h)/b   Int[(c + d*x)^n*((e + f*x)^p/(a + b*x)), x], x] 
 /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 354
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.), x_S 
ymbol] :> Simp[1/2   Subst[Int[x^((m - 1)/2)*(a + b*x)^p*(c + d*x)^q, x], x 
, x^2], x] /; FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && IntegerQ 
[(m - 1)/2]
 

rule 5759
Int[((a_.) + ArcSec[(c_.)*(x_)]*(b_.))*(x_)*((d_.) + (e_.)*(x_)^2)^(p_.), x 
_Symbol] :> Simp[(d + e*x^2)^(p + 1)*((a + b*ArcSec[c*x])/(2*e*(p + 1))), x 
] - Simp[b*c*(x/(2*e*(p + 1)*Sqrt[c^2*x^2]))   Int[(d + e*x^2)^(p + 1)/(x*S 
qrt[c^2*x^2 - 1]), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[p, -1]
 
3.2.13.4 Maple [F]

\[\int x \left (a +b \,\operatorname {arcsec}\left (c x \right )\right ) \sqrt {e \,x^{2}+d}d x\]

input
int(x*(a+b*arcsec(c*x))*(e*x^2+d)^(1/2),x)
 
output
int(x*(a+b*arcsec(c*x))*(e*x^2+d)^(1/2),x)
 
3.2.13.5 Fricas [A] (verification not implemented)

Time = 0.52 (sec) , antiderivative size = 1100, normalized size of antiderivative = 5.64 \[ \int x \sqrt {d+e x^2} \left (a+b \sec ^{-1}(c x)\right ) \, dx=\text {Too large to display} \]

input
integrate(x*(a+b*arcsec(c*x))*(e*x^2+d)^(1/2),x, algorithm="fricas")
 
output
[1/24*(2*b*c^3*sqrt(-d)*d*log(((c^4*d^2 - 6*c^2*d*e + e^2)*x^4 - 8*(c^2*d^ 
2 - d*e)*x^2 - 4*sqrt(c^2*x^2 - 1)*((c^2*d - e)*x^2 - 2*d)*sqrt(e*x^2 + d) 
*sqrt(-d) + 8*d^2)/x^4) + (3*b*c^2*d + b*e)*sqrt(e)*log(8*c^4*e^2*x^4 + c^ 
4*d^2 - 6*c^2*d*e + 8*(c^4*d*e - c^2*e^2)*x^2 - 4*(2*c^3*e*x^2 + c^3*d - c 
*e)*sqrt(c^2*x^2 - 1)*sqrt(e*x^2 + d)*sqrt(e) + e^2) + 4*(2*a*c^3*e*x^2 + 
2*a*c^3*d - sqrt(c^2*x^2 - 1)*b*c*e + 2*(b*c^3*e*x^2 + b*c^3*d)*arcsec(c*x 
))*sqrt(e*x^2 + d))/(c^3*e), 1/24*(4*b*c^3*d^(3/2)*arctan(-1/2*sqrt(c^2*x^ 
2 - 1)*((c^2*d - e)*x^2 - 2*d)*sqrt(e*x^2 + d)*sqrt(d)/(c^2*d*e*x^4 + (c^2 
*d^2 - d*e)*x^2 - d^2)) + (3*b*c^2*d + b*e)*sqrt(e)*log(8*c^4*e^2*x^4 + c^ 
4*d^2 - 6*c^2*d*e + 8*(c^4*d*e - c^2*e^2)*x^2 - 4*(2*c^3*e*x^2 + c^3*d - c 
*e)*sqrt(c^2*x^2 - 1)*sqrt(e*x^2 + d)*sqrt(e) + e^2) + 4*(2*a*c^3*e*x^2 + 
2*a*c^3*d - sqrt(c^2*x^2 - 1)*b*c*e + 2*(b*c^3*e*x^2 + b*c^3*d)*arcsec(c*x 
))*sqrt(e*x^2 + d))/(c^3*e), 1/12*(b*c^3*sqrt(-d)*d*log(((c^4*d^2 - 6*c^2* 
d*e + e^2)*x^4 - 8*(c^2*d^2 - d*e)*x^2 - 4*sqrt(c^2*x^2 - 1)*((c^2*d - e)* 
x^2 - 2*d)*sqrt(e*x^2 + d)*sqrt(-d) + 8*d^2)/x^4) + (3*b*c^2*d + b*e)*sqrt 
(-e)*arctan(1/2*(2*c^2*e*x^2 + c^2*d - e)*sqrt(c^2*x^2 - 1)*sqrt(e*x^2 + d 
)*sqrt(-e)/(c^3*e^2*x^4 - c*d*e + (c^3*d*e - c*e^2)*x^2)) + 2*(2*a*c^3*e*x 
^2 + 2*a*c^3*d - sqrt(c^2*x^2 - 1)*b*c*e + 2*(b*c^3*e*x^2 + b*c^3*d)*arcse 
c(c*x))*sqrt(e*x^2 + d))/(c^3*e), 1/12*(2*b*c^3*d^(3/2)*arctan(-1/2*sqrt(c 
^2*x^2 - 1)*((c^2*d - e)*x^2 - 2*d)*sqrt(e*x^2 + d)*sqrt(d)/(c^2*d*e*x^...
 
3.2.13.6 Sympy [F]

\[ \int x \sqrt {d+e x^2} \left (a+b \sec ^{-1}(c x)\right ) \, dx=\int x \left (a + b \operatorname {asec}{\left (c x \right )}\right ) \sqrt {d + e x^{2}}\, dx \]

input
integrate(x*(a+b*asec(c*x))*(e*x**2+d)**(1/2),x)
 
output
Integral(x*(a + b*asec(c*x))*sqrt(d + e*x**2), x)
 
3.2.13.7 Maxima [F]

\[ \int x \sqrt {d+e x^2} \left (a+b \sec ^{-1}(c x)\right ) \, dx=\int { \sqrt {e x^{2} + d} {\left (b \operatorname {arcsec}\left (c x\right ) + a\right )} x \,d x } \]

input
integrate(x*(a+b*arcsec(c*x))*(e*x^2+d)^(1/2),x, algorithm="maxima")
 
output
1/3*(e*x^2 + d)^(3/2)*a/e + 1/3*((e*x^2 + d)^(3/2)*arctan(sqrt(c*x + 1)*sq 
rt(c*x - 1)) - 3*e*integrate((3*(c^2*e*x^3 - e*x + (c^2*e*x^3 - e*x)*e^(lo 
g(c*x + 1) + log(c*x - 1)))*sqrt(e*x^2 + d)*log(x) + (3*c^2*e*x^3*log(c) - 
 3*e*x*log(c) + ((3*c^2*log(c) + c^2)*e*x^3 + (c^2*d - 3*e*log(c))*x)*e^(l 
og(c*x + 1) + log(c*x - 1)))*sqrt(e*x^2 + d))/(c^2*e*x^2 + (c^2*e*x^2 - e) 
*e^(log(c*x + 1) + log(c*x - 1)) - e), x))*b/e
 
3.2.13.8 Giac [F]

\[ \int x \sqrt {d+e x^2} \left (a+b \sec ^{-1}(c x)\right ) \, dx=\int { \sqrt {e x^{2} + d} {\left (b \operatorname {arcsec}\left (c x\right ) + a\right )} x \,d x } \]

input
integrate(x*(a+b*arcsec(c*x))*(e*x^2+d)^(1/2),x, algorithm="giac")
 
output
integrate(sqrt(e*x^2 + d)*(b*arcsec(c*x) + a)*x, x)
 
3.2.13.9 Mupad [F(-1)]

Timed out. \[ \int x \sqrt {d+e x^2} \left (a+b \sec ^{-1}(c x)\right ) \, dx=\int x\,\sqrt {e\,x^2+d}\,\left (a+b\,\mathrm {acos}\left (\frac {1}{c\,x}\right )\right ) \,d x \]

input
int(x*(d + e*x^2)^(1/2)*(a + b*acos(1/(c*x))),x)
 
output
int(x*(d + e*x^2)^(1/2)*(a + b*acos(1/(c*x))), x)